skip to main content


Search for: All records

Creators/Authors contains: "Stewart, Craig A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.

     
    more » « less
  2. Abstract

    This paper uses accounting concepts—particularly the concept of Return on Investment (ROI)—to reveal the quantitative value of scientific research pertaining to a major US cyberinfrastructure project (XSEDE—the eXtreme Science and Engineering Discovery Environment). XSEDE provides operational and support services for advanced information technology systems, cloud systems, and supercomputers supporting non-classified US research, with an average budget for XSEDE of US$20M+ per year over the period studied (2014–2021). To assess the financial effectiveness of these services, we calculated a proxy for ROI, and converted quantitative measures of XSEDE service delivery into financial values using costs for service from the US marketplace. We calculated two estimates of ROI: a Conservative Estimate, functioning as a lower bound and using publicly available data for a lower valuation of XSEDE services; and a Best Available Estimate, functioning as a more accurate estimate, but using some unpublished valuation data. Using the largest dataset assembled for analysis of ROI for a cyberinfrastructure project, we found a Conservative Estimate of ROI of 1.87, and a Best Available Estimate of ROI of 3.24. Through accounting methods, we show that XSEDE services offer excellent value to the US government, that the services offered uniquely by XSEDE (that is, not otherwise available for purchase) were the most valuable to the facilitation of US research activities, and that accounting-based concepts hold great value for understanding the mechanisms of scientific research generally.

     
    more » « less
  3. The landscape of research in science and engineering is heavily reliant on computation and data processing. There is continued and expanded usage by disciplines that have historically used advanced computing resources, new usage by disciplines that have not traditionally used HPC, and new modalities of the usage in Data Science, Machine Learning, and other areas of AI. Along with these new patterns have come new advanced computing resource methods and approaches, including the availability of commercial cloud resources. The Coalition for Academic Scientific Computation (CASC) has long been an advocate representing the needs of academic researchers using computational resources, sharing best practices and offering advice to create a national cyberinfrastructure to meet US science, engineering, and other academic computing needs. CASC has completed the first of what we intend to be an annual survey of academic cloud and data center usage and practices in analyzing return on investment in cyberinfrastructure. Critically important findings from this first survey include the following: many of the respondents are engaged in some form of analysis of return in research computing investments, but only a minority currently report the results of such analyses to their upper-level administration. Most respondents are experimenting with use of commercial cloud resources but no respondent indicated that they have found use of commercial cloud services to create financial benefits compared to their current methods. There is clear correlation between levels of investment in research cyberinfrastructure and the scale of both cpu core-hours delivered and the financial level of supported research grants. Also interesting is that almost every respondent indicated that they participate in some sort of national cooperative or nationally provided research computing infrastructure project and most were involved in academic computing-related organizations, indicating a high degree of engagement by institutions of higher education in building and maintaining national research computing ecosystems. Institutions continue to evaluate cloud-based HPC service models, despite having generally concluded that so far cloud HPC is too expensive to use compared to their current methods. 
    more » « less